skip to main content


Search for: All records

Creators/Authors contains: "Xie, Le"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Climate change is expected to intensify the effects of extreme weather events on power systems and increase the frequency of severe power outages. The large-scale integration of environment-dependent renewables during energy decarbonization could induce increased uncertainty in the supply–demand balance and climate vulnerability of power grids. This Perspective discusses the superimposed risks of climate change, extreme weather events and renewable energy integration, which collectively affect power system resilience. Insights drawn from large-scale spatiotemporal data on historical US power outages induced by tropical cyclones illustrate the vital role of grid inertia and system flexibility in maintaining the balance between supply and demand, thereby preventing catastrophic cascading failures. Alarmingly, the future projections under diverse emission pathways signal that climate hazards — especially tropical cyclones and heatwaves — are intensifying and can cause even greater impacts on the power grids. High-penetration renewable power systems under climate change may face escalating challenges, including more severe infrastructure damage, lower grid inertia and flexibility, and longer post-event recovery. Towards a net-zero future, this Perspective then explores approaches for harnessing the inherent potential of distributed renewables for climate resilience through forming microgrids, aligned with holistic technical solutions such as grid-forming inverters, distributed energy storage, cross-sector interoperability, distributed optimization and climate–energy integrated modelling. 
    more » « less
    Free, publicly-accessible full text available January 11, 2025
  2. The increasing uncertainties caused by the high-penetration of stochastic renewable generation resources and flexible loads pose challenges to the power system voltage stability. To address this issue, this paper proposes a probabilistic transferable deep kernel emulator (DKE) to extract the hidden relationship between uncertain sources, i.e., wind generations and loads, and load margin for probabilistic load margin assessment (PLMA). This emulator extends the Gaussian process kernel to the deep neural network (DNN) structure and thus gains the advantages of DNN in dealing with high-dimension uncertain inputs and the uncertainty quantification capability of the Gaussian process. A transfer learning framework is also developed to reduce the invariant representation space distance between the old topology and new one. It allows the DKE to be quickly fine tuned with only a few samples under the new topology. Numerical results carried out on the modified IEEE 39-bus and 118-bus power systems demonstrate the strong robustness of the proposed transferable DKE to uncertain wind and load power as well as topology changes while maintaining high accuracy. 
    more » « less
  3. In this study, a machine learning based method is proposed for creating synthetic eventful phasor measurement unit (PMU) data under time-varying load conditions. The proposed method leverages generative adversarial networks to create quasi-steady states for the power system under slowly-varying load conditions and incorporates a framework of neural ordinary differential equations (ODEs) to capture the transient behaviors of the system during voltage oscillation events. A numerical example of a large power grid suggests that this method can create realistic synthetic eventful PMU voltage measurements based on the associated real PMU data without any knowledge of the underlying nonlinear dynamic equations. The results demonstrate that the synthetic voltage measurements have the key characteristics of real system behavior on distinct time scales. 
    more » « less